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Calculations of the polarization spectrum by two-photon absorption
in the hydrogen Lyman-a line
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We present calculations, obtained by computer simulation, of the polarization spectrum by two-photon
absorption in the transition 1S→2S of hydrogen in plasmas at low electronic density. Fine structure and ion
dynamic effects have been included. The obtained results allow one to make a map of linewidths as a function
of the electronic density and temperature to be applied for diagnosis in plasmas.@S1063-651X~98!08710-8#

PACS number~s!: 52.65.2y, 32.60.1i, 32.70.Jz
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I. INTRODUCTION

The computer simulation methods applied to the calcu
tion of Stark broadened spectral line shapes have been sh
to be the most accurate@1# in spite of the volume of neces
sary calculation. These methods have been used since
1980s, on one hand to study isolated phenomena as if
were an ideal laboratory@2–4#, and on the other hand t
make tables of practical use in diagnosis of plasmas@5,6#. In
this work we present a calculation done by computer sim
lation of the spectrum of the Stark broadened Lyman-a tran-
sition of the hydrogen that is obtained when one uses po
ization spectroscopy by two-photon absorption techniqu
This technique was used for the first time in absorption m
surements, that is to say, in processes that only detec
imaginary part of the two-photon susceptibility, in molecu
vapors and particularly in the studied transition in this wo
@7#. In 1976 the polarization spectroscopy by two-photon
sorption was employed for the first time, including the d
tection of the real part of the susceptibility in the 3S→5S
two-photon transition in sodium vapor@8#.

Recently, this spectroscopic method has been applie
the study of the hydrogen 1S→2S transition in plasmas~see
Refs. @9–14# to which we will refer frequently!. The final
aim of this work is to provide data on the form of the spect
lines, and especially of their full width at half maximum
~FWHM!, for doing diagnosis in plasmas in a wide range
electronic densities and temperatures. We will devote spe
attention to the comparison with the only experimental
sults that we know of polarization by two-photon absorpti
spectrum in the studied line.

II. POLARIZATION SPECTROSCOPY

The polarization spectroscopy is based on the meas
ment of the change of the polarization state of a test w
when it crosses a medium in study. Such a change is indu
by a polarized pumping wave. This pumping wave alters
optical behavior of the medium modifying its refraction i
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dex and absorption coefficient in a nonisotropic way.
some way, polarization spectroscopy is similar to saturat
spectroscopy, that is based on the measure of the absor
of a probe beam in a medium whose optical response
altered by a pumping beam.

The basic idea of the polarization spectroscopy may
well understood analyzing the experimental scheme re
sented in Fig. 7.20 of Ref.@15# ~in this book a very good
description of this spectroscopic technique can be foun!.
The laser beam is split into two signals, one of them,
pumping beam, of great intensity, and the other, the pr
beam, of weak intensity. The pumping beam passes thro
a l/4 plate in order to be circularly polarized and it is sent
the studied sample. On the other hand, the probe b
crosses a polarizerP1 that puts the radiation on a linea
polarization state. An analyzerP2 crossed withP1 is set after
the sample and before the detector. When the pumping b
is not present at the medium, the probe beam meets an
tropic medium and the detector only detects certain resid
radiation that should be null if both polarizers were perfe
On the contrary, if the pumping beam is present, this indu
an optical anisotropy in the medium, that gives rise to
elliptical polarization of the probe wave and, consequently
certain signal is obtained in the detector@15#.

In the experiment that we study in this work@12,14#, the
probe beam detects the susceptibility induced by a tw
photon transition@8,9# between the levelsn51 andn52 of
the hydrogen atom~Lyman-a!. The laser used emits a radia
tion of 243 nm. The pumping beam produces a transit
between the state 1S and a virtual statel 51, m51 ~statep!
because it is a circularly polarizeds1 beam. This fact gives
rise to a different saturation of the three possible states
that virtual level: only the state withm51 is saturated. This
is equivalent to an anisotropy in the medium because a
form population of the differentm sublevels is not found. In
the same process, the probe beam is absorbed, giving ri
the transition between the virtual level and then52 level.
The selection ruleuD l u51 imposes the arrival level to be th
2S because there is no level withl 52 in that range of ener-
gies. In that case only the transition withDm521 is al-
lowed, that is to say, it must absorb thes2 part of a photon
4950 © 1998 The American Physical Society
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PRE 58 4951CALCULATIONS OF THE POLARIZATION SPECTRUM . . .
of the probe beam. Of course, a process in which the
absorbed photon belongs to the probe beam is possible
this case only when the transition 1S→@m521# is pro-
duced is it possible to reach the upper level 2S through a
seconds1 photon of the pumping beam. In either case, t
scheme allows us to see that a two-photon transition betw
the staten51 andn52 is impossible if both photons belon
to the pumping beam, because, in that case, it would hav
be uDmu52 ~see Ref.@10# for a detailed analysis of this
experiment!.

Modifying the frequency of the laser radiation, the spe
trum of the 1S→2S transition is covered. In our case, th
spectrum is determined by the Stark broadening due to
collisions suffered by the emitter with the charged partic
that surround it.

III. SPECTRAL LINE SHAPES

A. Emission spectrum

As is well known, the profile of a spectral line of dipo
emission can be obtained from the Fourier transform of
average$% of the autocorrelation functionC(t) of the atomic
dipole momentD(t) performed over an ensemble@16#:

I ~v!5
1

p
Re E

0

`

dt$C~ t !%eivt, ~1!

C~ t !5tr@D~ t !•D~0!#, ~2!

D~ t !5U†~ t !DU~ t !, ~3!

whereU(t) is the evolution operator of the emitter atom th
satisfies the Schro¨dinger equation

i\
d

dt
U~ t !5H~ t !U~ t !5@H01qE~ t !•R#U~ t ! ~4!

in which the HamiltonianH(t) includes both the structure o
the undisturbed states,H0 , and the effects of the charge
perturbers on the emitter through the dipole interact
qE•R. E(t) is the temporary sequence of the electric m
crofield.

In most cases, the energy gap between the group of u
levels and the group of lower levels of the transition stud
is in the optical or in the ultraviolet range. The collisio
processes between the emitter and the perturbers give ri
energy exchanges deep under that separation, so that w
assume that they cannot induce transitions between these
groups of states~no-quenchingapproximation!. As a conse-
quence, the evolution operator that we will consider has
form

U~ t !5S Uu~ t ! 0

0 Ul~ t !
D , ~5!

whereUu(t) and Ul(t) are two matrices that give the tem
porary evolution of the states of the upper and lower gro
independently.

On the other hand, when considering the emission sp
trum, we are only interested in a limited range of frequenc
from the center of the spectral line, so that our displacem
st
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in frequency is small enough and we do not have to cons
dipole transitions beyond those two groups, and much
between the elements of the same group, whose distanc
energies is much smaller than that of the corresponding
tical transition. In this way, the matrix of the dipole mome
has the form

D5S 0 d

d† 0D . ~6!

So, the trace that appears in Eq.~2! is expressed as

C~ t !5tr~Uu
†dUl•d†!1tr~Ul

†d†Uu•d!. ~7!

The matricesUu andUl are, respectively, the solutions o
the equations

i\
d

dt
Uu5HuUu , i\

d

dt
Ul5HlUl , ~8!

with

Hu5Eu1H0u1E~ t !•Ru ,
~9!

Hl5El1H0l1E~ t !•Rl ,

whereEu1H0u andEl1H0l are the projections of the com
plete Hamiltonian of the unperturbed emitter on the su
spaces of the upper and lower states, respectively, and s
larly with the projections of theR operator on those sam
subspaces. The matricesEu andEl , that are proportional to
the unit matrix, give the separation in energies between
two groups of states. We can omit these constant quant
putting in Eq.~7! Uu exp(2iEut/\) andUl exp(2iEl t/\) in-
stead ofUu and Ul , respectively, so that we can write th
autocorrelation function in the form

C~ t !5eiv0t/\ tr~Uu
†dUl•d†!1e2 iv0t/\ tr~Ul

†d†Uu•d!,
~10!

with v0[(Eu2El)/\. If we set

tr~Ul
†d†Uu•d![CR~ t !1 iCI~ t !, ~11!

whereCR(t) andCI(t) are real functions of the time, then

C~ t !52CR~ t !cos~v0t !12CI~ t !sin~v0t !, ~12!

and, the emission profile is

I ~v!5
1

p E
0

`

dt cos~vt !@2CR~ t !cos~v0t !

12CI~ t !sin~v0t !#

5
1

p E
0

`

dt„$cos@~v1v0!t#1cos@~v2v0!t#%CR~ t !

1$sin@~v1v0!t#2sin@~v2v0!t#%CI~ t !…. ~13!

We setv5v01Dv, and we calculate the spectrum arou
the frequencyv0 . Furthermore, we will not take into ac
count the contribution to the spectrum of quantities



e
f

n

a

e

he

l
Eq

t

ith
s of

ier

a-
ish-
he

ell
ef.

n-
the
e-

his
it-

ers.

tro-
ove
ci-
to
-

4952 PRE 58MARCO ANTONIO GIGOSOS AND MANUEL ÁNGEL GONZÁLEZ
*0
`dt cos@(v1v0)t#CR(t) that would only make sense if th

functionCR(t) or CI(t) had variations in time in that scale o
frequencies. Then we have

I ~Dv!5
1

p E
0

`

dt@cos~Dvt !CR~ t !2sin~Dvt !CI~ t !#.

~14!

B. Absorption spectrum

We are interested in calculating the absorption profile i
very narrow gap around the central frequencyv0 . So, the
shapes of the emission and absorption profiles are the s
@17–19#. From now on, we will talk indistinctly about the
emission or the absorption profile.

C. Dispersion spectrum

The form of the polarization profile is the sum of th
squares of the absorption and the dispersion profiles~see
page 456 of@15#! that are related to each other through t
Kramers–Kronig equations. Thus, ifA(x) is the absorption
profile, the dispersion profile is@20#

D~x!5
1

p
PE

2`

1` A~y!

y2x
dy, ~15!

where P denotes principal value.
The absorption profile is given by Eq.~1!. In order to

obtain the principal value of the expression~15! we set

A~y!

y2x
5

A~x!

y2x
1

A~y!2A~x!

y2x
. ~16!

We will suppose thatA(x) is derivable, so that the principa
value of the second term of the member on the right of
~16! coincides with the ordinary integral@in the limit y→x
the integrand tends todA(x)/dx#. On the other hand, the firs
term of the member on the right of Eq.~16! is a function of
y antisymmetric with respect to the pointx, so that
P*2`

1`A(x)dy/(y2x)50. Therefore@21#

D~x!5
1

p E
2`

1` A~y!2A~x!

y2x
dy. ~17!

Taking into account the form of the absorption profile,

A~y!2A~x!

y2x
5

1

p
Re E

0

` eiyt2eixt

y2x
C~ t !dt

5
1

p
Re E

0

`

ieixt

sinS y2x

2
t D

y2x

2

ei @~y2x!/2# tC~ t !dt.

~18!

Thereby,

D~x!5
2

p2 Re E
0

`

ieixtC~ t !dtE
2`

1`

dz
sin z

z
eiz, ~19!
a

me

.

where we have introduced the variable changez
5(y2x)t/2 in the last integral. Since*2`

1`eiz sin(z)/z5p/2,
we finally obtain

D~v!5
1

p
Re E

0

`

iC~ t !dteivt52
1

p
Im E

0

`

C~ t !dteivt,

~20!

and proceeding in the same way as in Eq.~14!,

D~Dv!52
1

p E
0

`

@cos~Dvt !CI~ t !1sin~Dvt !CR~ t !#.

~21!

D. Line profiles of polarization signals

As we have mentioned before, the profile recorded w
polarization spectroscopy results in the sum of the square
the absorption and the dispersion profiles:

P~Dv!5A~Dv!21D~Dv!2. ~22!

P(Dv) is, therefore, the square of the module of the Four
transform ofC(t). SinceC(t) is real,P(Dv) can be put as
the cosine transform of the autocorrelation function ofC(t):

P~Dv!5
2

p E
0

`

dt cos~Dvt !E
0

`

dtC~t!C~t1t !. ~23!

In a calculation by computer simulation, the normaliz
tion of the spectral absorption profiles is obtained establ
ing C(t50)51. In the case of a polarization spectrum, t
condition

E
2`

1`

P~Dv!dDv51 ~24!

requires that

2E
0

`

dtC~ t !251. ~25!

IV. MATHEMATICAL TREATMENT
OF THE SIMULATION

The physical plasma model adopted in this work as w
as the simulation method are identical to that used in R
@5#. In this section we will summarize briefly the fundame
tal ideas of the simulation process and give an account of
specific parameters in this work. The main difference b
tween the mathematical treatment in the simulation in t
work and in the previously mentioned one is about the em
ter atom, but not in what refers to the ensemble of perturb

A. Plasma model

We consider a weakly coupled, homogeneous and iso
pic plasma where the particles are independent and m
along rectilinear paths with constant velocity. Those velo
ties satisfy a Maxwell-Boltzmann distribution according
the m-ion model@3#. In the simulation a finite spherical vol
ume is assumed withNP ions andNP electrons. The emitter
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is placed at the center of the sphere. The method of su
tuting the particles that reach the edge of the sphere, whic
the most delicate aspect of the simulation technique, is
tailed in Ref.@5#. This method guarantees that the statisti
distributions used~homogeneity and isotropy of the pa
ticles’ positions, isotropy of the paths, and Maxwellian d
tribution for the velocity! are steady with the time@22# and
that there is no correlation between the outgoing partic
and the incoming ones.

Table I summarizes the number of considered particle
the different simulation processes. Those numbers of
ticles are enough to guarantee the quality of the results s
the nearest particles are the ones that completely deter
the mean behavior of the autocorrelation function of the
pole moment of the emitter@5#.

The electric field of the ensemble of simulated ions a
electrons is evaluated at the center of the sphere accordin
the expression of the Debye shielded field in order to t
into account, at least in an approximate way, the correla
effects between charged particles of different sign.

As is mentioned in Ref.@5#, we have used the same n
merical sequence of the electric microfield to study seve
cases of density and temperature mutually bound through
parameterr5R0 /RD , that characterizes the dimensions o
numerical simulation process. In that expressionR0
5@3/(4pNe)#1/3 is the mean interparticle distance—Ne is the
electronic density—andRD5Ae0kT/qe

2Ne is the Debye ra-
dius of the system at the temperatureT. The high number of
temporary sequences employed in the simulations allow
to work without any mechanism of sample selection; in p
ticular, the control over the initial conditions of each sim
lation, as is already done in Ref.@5#.

Once the temporary microfield sequence is establishe
is used by the differential equations~8! that set up the evo
lution of the dipole moment of the emitter atom. These eq
ti-
is
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tions have been solved considering the microfield seque
as a stepped function in which the electric field is constan
the interval between two temporary steps. The step size u
~in our caseDt50.01R0 /v0e with v0e the mean square
speed of the electrons! allows us to guarantee the quality o
the numerical integration@22#. In this way, in each tempo
rary stept j of the process of simulation the evolution oper
tor is

U~t j !5U~t j 211Dt,t j 21!U~t j 21!, U~0!51

U~t1Dt,t!5expF2
i

\
H~t!DtG

5(
k

expF2
i

\
Hk~t!Dt GPk~t!,

~2.6!

whereH(t)5H01qE(t)•R is the Hamiltonian of the emit-
ter at the instantt andPk(t) is the projector on the subspac
of eigenstates ofH(t) with eigenvalueHk(t).

B. Emitter atom model

1. Calculation of the evolution operator

The Lyman-a line is produced in a transition between th
statesn52 andn51 in the hydrogen atom. The lower leve
has two degenerated states that, inno-quenchingapproxima-
tion, are not altered by the presence of an external elec
field. In the absence of a perturber electric field, the state
the upper level have an energy that depends on the quan
numberj @23#. In the casen52, the values ofj are 1

2 and 3
2 ,

so that the eigenvalues ofH0 are 6s563.6227310224 J
562.261331025 eV, where we have taken the ‘‘center o
gravity’’ of the group of states as the origin of energies.
the presence of an external electric fieldE, the Hamiltonian
of the upper level takes the form@23#
H5

¨

2s 0 2A1

3
F0 2A2

3
F1

2F2 2A2

3
F0 2A1

3
F1

0

0 2s A2

3
F2 A1

3
F0 0 2A1

3
F2 2A2

3
F0 2F1

2A1

3
F0 2A2

3
F1

2s 0 0 0 0 0

A2

3
F2 A1

3
F0 0 2s 0 0 0 0

F1 0 0 0 s 0 0 0

2A2

3
F0 A1

3
F1

0 0 0 s 0 0

A1

3
F2 2A2

3
F0 0 0 0 0 s 0

0 F2 0 0 0 0 0 s

©

, ~27!
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whereF0[3qa0Ez andF6[73qa0(Ex6 iEy)/&. The se-
lected base of states isu j ,l ,mj& with j 5$1/2(l 50),1/2(l
51),3/2(l 51)%, mj5$2 j , . . . ,1 j %. The presence of the
electric field partially breaks the degeneracy inmj . The ei-
genvalue equation of the matrixH is

~H2s1 !FH31sH22~s21F2!H2S s31
1

3
sF2D 1G50.

~28!

One of the eigenvalues is independent of the electric fi
In order to obtain the other three eigenvalues, we define
matrix

M[
1

f S H1
1

3
sD ~29!

~f is a quantity that will be determined later! so that the
eigenvalues that depend on the fieldF are obtained from the
polynomial

f 3M32S 4

3
s21F2D f M2

16

27
s3150. ~30!

We make

f [
4

3
sA11S)F

2s D 2

5
4s

3 cosw
, ~31!

tan w[
)F

2s
, ~32!

then Eq.~30! can be rewritten as

4M323M5cos3w. ~33!

The latter is the Chebyshev polynomial@24# T3(M ) cor-
responding to the expansion cos(3u)54 cos3(u)23 cos(u), so
that the solutions of Eq.~33! can be written as

Mk5cos~uk!,
~34!

uk5
1

3
arccos@cos3w#1

2kp

3
, k50,1,2.

The eigenvalues ofH are then~see Fig. 1!

TABLE I. Working conditions of the simulations:Np , number
of electrons; log10 Ne , range of the electronics densities simulat
in m23, with increments of13 of decade.

r Np Samples log10 Ne

0.10 250 6128 19.66–21.33
0.15 250 9106 19.66–22.00
0.20 250 14645 19.66–22.33
0.25 200 12564 19.66–23.00
0.30 175 12177 20.00–23.00
0.40 100 11234 20.66–23.00
0.50 100 10708 21.00–23.00
0.60 100 12593 21.00–23.00
0.70 100 12817 22.00–23.00
d.
e

Hk5
s

3 S 4 cosuk

cosw
21D , k50,1,2

~35!
H35s.

The calculation of the eigenstates ofH is straightforward:
the projectorsPk on each one of the spaces of the states w
eigenvalueHk can be obtained analytically through the e
pression

Pk5

)
j Þk

~H2Hk1!

)
j Þk

~H j2Hk!
. ~36!

In the numerical calculation, these formulations, when
serted into the relationship~26!, allow us to obtain the se
quence of the evolution operator of the upper level. T
group of lower states is not affected by the collisions of t
perturbers, so that in expression~11! we can setUl51.

2. Calculation of the autocorrelation function

The transition studied in this work connects the low
state 1S with the upper state 2S. This jump is obtained by
the absorption of two photons without an intermedia
atomic level. The absorption of the first photon puts the at
in a state in which it is maintained about 1 fs@10#. In that
interval the absorption of the second photon must be p
duced. In the scale of characteristic times of loss of corre
tion, both photons are absorbed simultaneously so that in
transition process no change is produced in the phase o
evolution operator. This allows us to establish as a ju
operator that plays the role of the dipole operatord in Eq. ~7!
the matrix that connects the states 1S of the lower level with
the 2S of the upper level. It must be taken into account th
in that transitionD l 50 must be satisfied. In the base
states that we are using, such a normalized transition ma
takes the form

d†5
1

&
S 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0D . ~37!

In this way, the autocorrelation function describes the evo
tion of the level 2S.

C. Simple model of static ions

If we do not take into account the dynamical effects of t
collisions of ions and electrons with the emitter atom, tha
to say, if we consider that the electric fieldE in Eq. ~8! is
constant in time, then the solution of the differential equ
tions leads to

U~ t !5expF2
i

\
Ht G5 (

k50

3

e2~ i /\!HktPk , ~38!

where the eigenvaluesHk and the projectorsPk depend on
the static electric fieldE of the configuration. Substituting
this expression into Eq.~10! we obtain
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C~ t !52 Re (
k50

3

expF2 i S v01
1

\
HkD t G tr~dd†Pk!.

~39!

Carrying out operations in Eq.~36!, it is found that, for
the absorption spectrum of two photons~see Fig. 1!,

tr~dd†Pk!5
2

3

@cos~uk!2cos~w!#@2 cos~uk!1cos~w!#

4 cos2~uk!21
,

~40!
k50,1,2,

tr~dd†P3!50.

The broadening effect of the quick collisions due to t
electrons can be taken into account following an imp
model@16# replacing the real eigenvaluesHk with the quan-
tities Hk2 iFk so that the spectrum corresponding to t
configuration of static electric fieldE is

A~Dv,E!5
1

p
Re (

k

1

i ~Hk2\Dv!1Fk
tr~dd†Pk!.

~41!

FIG. 1. Middle figure: Relative intensity,I i5tr(dd†Pi), of the
corresponding transitions of the two-photon absorption process
tween the levelsn51 andn52 in the hydrogen atom as a functio
of the applied static electric field. Lower figure: EigenvaluesHi ~in
units of the separations of fine structure! of the leveln52 as a
function of the applied electric field. The subscripts 0, 1, and 2
these figures correspond to those of the components that d
from the levels 0, 1, and 2, in accordance with the notation e
ployed in Eq.~35!. The upper scale represents the perturber den
that would have as typical field the fieldE of the X axis.
t

Then the total spectral profile is obtained averaging t
function on all the possible configurations of static field

A~Dv!5E d3EW~E!A~Dv,E!, ~42!

whereW(E) is the statistical distribution of the static fiel
@25#.

The result of an analytical calculation, according to t
previous expressions, of the two-photon absorption spect
in the transition studied is shown in Fig. 2, in comparis
with a simulation accomplished with static ions. In the an
lytical calculationF05F250.013 pm andF150.020 pm.
Figure 2 also shows the dipole emission Lyman-a spectrum
obtained in the simulation with static ions, under the sa
conditions of electronic density and temperature, to show
relative situation of both types of profiles.

In Fig. 3 we show a sequence of polarization profiles
two-photon absorption obtained by computer simulation w
practically static ions~m51000 in units of the mass of th
proton!. It can be seen how the shape of the profiles is mo
fied with the density due to two reasons: First, due to
change in the width of the components, and, second, by
dependency of the transition probabilities with the intens
of the typical static field that gives rise to the Stark effe
~see Fig. 1!.

V. RESULTS

Table I summarizes the specific cases ofr and density of
the plasma considered in this work. In each one of th
conditions, the calculation is carried out with values of t
parameterm50.5, 1.0, and 2.0, that covers the cases of
perimental interest, and in some (r50.3– 0.7), furthermore,

e-

f
art
-

ty

FIG. 2. Two-photon absorption spectrum (1S→2S) according
to a quasistatic broadening model for the ionic collisions and
impact model for the electronic collisions. In this figure we sho
the dipole one-photon emission profile of the transitionn52→n
51. Both profiles are area normalized. The labels 0, 1, and 2 of
figure correspond to those of the components that depart from
levels 0, 1, and 2, in accordance with the notation employed in
~35!.
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for m55.0, 10.0, 50.0, 100.0, and 1000.0, in order to stu
the extrapolation to static ions. Also we have calculated
special cases of density and temperature of the experime
data shown below in the comparison of theory and exp
ence.

In Fig. 4 we show the behavior of the FWHM of th
polarization spectra with the electronic density. As dens
decreases, the width presents an almost linear response
the density, as is characteristic of the impact broadening
this range, the loss of coherence in the emission process
to the individual collisions is very small, so that even t
ionic collisions are in the impact dominance~see Ref.@5# for
discussion of this aspect!. At high densities, the width tend
to follow a behavior asNe

2/3, that reflects the influence of th

FIG. 3. Sequence of polarization profiles obtained in the sim
lation for different values of the density and of the parameterr of
the plasma. In all cases,m51000, that is to say, nearly static ion
y
e
tal
i-

y
ith

In
ue

quasistatic part of the broadening mechanisms.
The influence of the temperature and the mass of the

turbers is summarized in Fig. 5. At low densities we are
the impact broadening domain—even for the ions—tha
rendered in a behavior of the width of the line with the te
perature in the formT21/2. That is to say, the quicker th
emitter-perturber collisions are, the smaller their effects

-

FIG. 4. Full width at half maximum of the polarization profile
at constant temperature obtained in the simulation as a functio
the electronic density. In this case,m50.5.

FIG. 5. Full width at half maximum of the polarization profile
obtained in the simulation as a function of the temperature for s
eral conditions of electronic density and mass of the perturbers



t
s

fe
ig
s
ur
,
th
th

o
d
-
ing

o
ed

nt
stic
ion
his

n
er
than
t of
ons
m-
di-

ruc-
r
the
t of

m-
nsi-
l
1

if-
a

is
am

is
ame

PRE 58 4957CALCULATIONS OF THE POLARIZATION SPECTRUM . . .
the coherence loss are. Then, in that regime, the bigger
perturber mass is, the slower their movement is, and a
consequence their collisions with the emitter are more ef
tive, that implies a larger width. In the other extreme, at h
densities, we are in the domain of the quasistatic effect
the ionic collisions, so that the trend with the temperat
and the mass of the perturbers is reversed. In this case
effects of ion dynamics tend to increase the width of
lines, which gives rise to an increase of the width as
reduced mass of the emitter-perturber pair decreases. In
intermediate zone is produced the transition between th
two domains that we have considered, on one hand, of
namical broadening of the ions~that increases with the tem
perature! and, on the other hand, of ionic impact broaden
~that decreases with the temperature!.

In Fig. 6 we show the result of an academic calculation
the polarization profile with growing values of the reduc

FIG. 6. Polarization profiles obtained in the simulation for d
ferent conditions of the mass of the perturbers. The spectra
normalized in height.

FIG. 7. Comparison between experimental data@12,14# ~D-D1

plasma! and the results of the simulation. The conditions of th
plasma were obtained from Balmer profiles registered in the s
experiment@12#.
he
a

c-
h
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e
the
e
e
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f

massm of the emitter-perturber pair. The most importa
effect due to the change of the perturber mass is the dra
change of the shape of the spectral profile. The effects of
dynamics in this spectral line are fundamental. Though t
result seems impossible to confirm experimentally~the real-
istic values ofm in the plasmas in equilibrium are betwee
0.5 and 2! in plasmas out of equilibrium, where the emitt
and the ionic perturbers are at a much lower temperature
the electrons, the configuration can be equivalent to tha
ions and the static emitter surrounded by a cloud of electr
of great mobility. In those cases, the calculations by co
puter simulation can be useful in order to make plasma
agnosis tables.

The calculations that are presented include the fine st
ture of the leveln52, of course. This is indispensable fo
low densities, since the level structure completely marks
shape of the profiles. But even at high densities, the effec
the fine structure on the shape of the profile~though no
longer in the width! is still appreciated: the spectra are asy
metrical as a consequence of the relationship of the inte
ties of the components@14#, especially of the two latera
components~those that in Fig. 2 are labeled with 0 and!

re

e

FIG. 8. Comparison between experimental data@12,14# ~H-H1

plasma! and the results of the simulation.

FIG. 9. Comparison between experimental data@12,14# ~D-D1

plasma! and the results of the simulation. The conditions of th
plasma were obtained from Balmer profiles registered in the s
experiment@12#.
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FIG. 10. Full width at half maximum curves
of the two-photon absorption polarization spe
trum in the transition 1S→2S of the hydrogen.
The curves represent a constant value of
width ~in pm! as a function of the electronic den
sity and temperature. The curves correspond
to three different values of the massm of the
ionic perturbers have been represented.
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that tend to have the same intensity for very high elec
fields ~see Fig. 1!.

A. Comparison with experimental data

The only experiments that we know of on polarizati
spectroscopy by two-photon absorption in the Lyman-alp
transition are documented in Refs.@9–11, 13, 14# and, espe-
cially, in Ref. @12#. In this last experiment a continuous arc
stabilized at low pressure with pure hydrogen~plasma with
m50.5! and pure deuterium (m51.0) was employed. The
diagnosis of the plasma was carried out through the recor
the Stark broadened spectra of the Balmer-b and Balmer-g
lines.

We have reproduced those Balmer profiles by compu
simulation @5# in order to determine the electronic densit
The same plasma conditions were fixed for the Balmer-b and
Balmer-g lines and for the polarization profiles. The resu
are shown in Figs. 7–9. In all cases we have employed
Balmer lines to determine the electronic density that sho
be used in the simulation calculations. An excellent agr
ment between calculation and experiment can be seen i
the cases compared.
c
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B. Conclusions

The calculation method used in this work for obtainin
polarization spectra is sufficiently effective and it can be e
ployed to make spectrum tables that can be used in pla
diagnosis. In the specific case studied here, the trans
Lyman-a by two-photon absorption, the relationship b
tween the width of the spectral line and the electronic den
can serve as a diagnostic method of sufficient quality. T
influence of the temperature on the shape of the profile
smaller than the influence of charged perturber density
that the determination of the electronic density through
measurement of the FWHM of the spectra can be carried
with great precision. Figures 10 and 11 show maps of c
stant FWHM in the spectra that are obtained through po
ization spectroscopy by two-photon absorption technique
a wide range of electronic densities and temperatures. In
10 the influence of the mass of the perturbers on the spe
width can be clearly seen. Figure 11, where our results
the case of a pure hydrogen plasma are summarized,
practical use for diagnosis. The measure of the FWHM of
studied spectrum allows us to set bounds to the values o
electronic density and temperature of the plasma.
c-

the
-

FIG. 11. Full width at half maximum curves
of the two-photon absorption polarization spe
trum in the transition 1S→2S of the hydrogen.
The curves represent a constant value of
width ~in pm! as a function of the electronic den
sity and temperature. In this case,m50.5mp ~mp

is the mass of the proton!, that corresponds to the
case of a pure hydrogen plasma.
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